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Abstract

This paper was inspired by students at Guangzhou University in 2014, the problems
are variations from those described in [1]. We seek the shortest total distance from curve
1 to curve 2, curve 2 to curve 3 and curve 3 back to curve 1. In 3D, we want to �nd the
shortest total distance between surface 1 and surface 2, surface 2 and surface 3, surface
3 and surface 4, and �nally surface 4 and surface 1. We assume curves and surfaces are
not intersecting. We start with the simplest case for circles in 2D and we link to higher
dimensions through the Lagrange multipliers method.

1 Introduction

In [1], we considered three given disjoint curves, C1; C2 and C3 respectively in the plane, and we
found the minimum total (squared) distance from C1 to C2 and C1 to C3:We also worked on four
non-intersecting convex surfaces S1; S2; S3 and S4 in R3 and we found the the minimum total
(squared) distance from S1 to S2; S1 to S3; and S1 to S4: In this paper, we discuss the following
problems which were raised during the �rst author�s research visit at Guangzhou University
during February and April of 2014. Given three disjoint curves, C1; C2 and C3 respectively in
R2; we need to �nd the minimum total distance from C1 to C2; C2 to C3 and C3 to C1: Next,
we consider four disjoint convex surfaces S1; S2; S3 and S4 and we shall �nd the minimum
total distance from S1 to S2; S2 to S3; S3 to S4 and S4 to S1: We note that the total squared
distance is obviously di¤erent from the exact total distance. However, in this paper, we do
not distinguish the di¤erences between these two when we are proving theorems. We will only
use true total distance, kx� yk ; for x and y in R2 or R3 in actual computations with Maple.
The method of �nding the extremum of the total (squared) distance is an application of the
Lagrange Multipliers Method, which we summarize in Corollary. Theorem 6 is a generalization
of Corollary. Throughout this paper, the curves and surfaces are not intersecting.
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2 Three circles in 2D

We start with the simple three circles case in 2D, which can be accessible to high school
students. We call the three given circles �1;�2;�3, with centers O1; O2; O3 respectively. It is
assumed that no two circles intersect, and no circle is inside another. We want to �nd three
points A 2 �1; B 2 �2 and C 2 �3 such that the sum AB + BC + CA attains a minimum.
We note that �1;�2 and �3 are closed sets on the Cartesian coordinate system, so the distance
AB +BC +CA is a continuous function of A;B and C, so distance has a minimum value and
such points A;B and C exist.

Theorem 1 If A 2 �1; B 2 �2 and C 2 �3 are such that the sum AB +BC +CA reaches the
minimum, and we draw the line PQ passing through A and tangent to �1 (see Figure 1), we
must have ]BAP = ]CAQ.

O 2

O 1

O 3

A

B
C

P Q

A 1

Figure 1. Tangency and equal angles

Proof: Suppose that AB = c; AC = b; O1A = r;]BAP = � and ]CAQ = �: Let A1 be
a point on the circle �1 which is close to A, and let ]AO1A1 = 2�. (Here if A1 is inside the
angle ]O1AQ, then � > 0. If A1 is inside the angle ]O1AP , then � < 0. Now let us calculate
the value of A1B + A1C. We only consider the case in Figure 1 when � > 0. The other case is
similar.
First, we note that AA1 = 2r sin �; ]O1AA1 = �

2
� �; ]O1AP = �

2
and since ]BAP = �;

we see ]BAA1 = � � �+ �: It follows from the law of cosine that

BA1 =
q
BA2 + AA21 � 2BA � AA1 cos(� � �+ �)

=

q
c2 + (2r sin �)2 + 4cr sin � � cos(�� �)

=
q
c2 + 4cr sin � cos� cos �+ 4cr sin2 � cos�+O(�2)

=
p
c2 + 2cr sin 2� cos�+O(�2)

�
p
c2 + 2cr � 2� cos�+O(�2)O(�2) (when � is small)

= c+ 2r� � cos�+O(�2): (1)
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Similarly, we observe that ]CAA1 = � + � and it follows from the law of cosine we have

CA1 =
q
CA2 + AA21 � 2CA � AA1 cos(� + �)

=

q
b2 + (2r sin �)2 � 4br sin � � cos(� + �)

=
q
b2 � 4br sin � cos � cos �+ 4br sin2 � cos � +O(�2)

=
p
b2 � 2br sin 2� cos � +O(�2)

�
p
b2 � 2br � 2� cos � +O(�2)(when � is small)

= b� 2r� cos � +O(�2): (2)

Therefore, CA1+BA1 = b+ c+2r(cos�� cos �)�+ O(�2) is a function of �. It is clear that
if AB + BC + CA reaches the minimum, then CA1 + BA1 � b + c must hold, which implies
2r (cos�� cos �) = 0 and hence � = �.

Theorem 2 If A 2 �1; B 2 �2 and C 2 �3 such that the sum AB + BC + CA reaches the
minimum, then the three lines O1A;O2B and O3C meet at the incenter I of 4ABC.

Proof: It follows from theorem 1 that the lineO1A is the angle bisector of ]BAC. Similarly,
O2B and O3C are the angle bisectors of ]CBA and ]ACB respectively. Therefore, three lines
meet at the incenter I of 4ABC.
Remark: We note from Theorem 2 that it suggests a way to obtain the required points

for achieving the minimum of AB + BC + CA by using a dynamic geometry software, we use
[2] for demonstration. We choose a moving point I, and let O1I; O2I and O3I meet �1;�2
and �3 at A;B and C, respectively. Then we draw lines AB;BC and CA, and measure
]BAI;]CAI;]ABI and ]CBI: We drag point I until the two equations ]BAI = ]CAI
and ]ABI = ]CBI hold simultaneously. The points A;B and C then are the required points.
(See Figure 2)

O 1

O 2
O 3

I

A

B C

∠ BAI = 34.14 °

∠ CAI = 33.96 °

∠ ABI = 31.14 °

∠ CBI = 31.35 °

Figure 2. I is the incenter of 4ABC:
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In Figure 2, we see that the angles are not identical due to restriction of package [2].
However, the points A;B and C are the best points we can obtain using [2]. (The error of
deviation ratio is under 0:01%:)
The following is an immediate observation from Theorem 2:

Theorem 3 If A 2 �1; B 2 �2 and C 2 �3 such that the sum AB + BC + CA reaches the
minimum, and tangent lines for �1;�2; and �3 at A;B; and C respectively form a triangle
XY Z. Then the point I; the incenter of triangle ABC; is the orthocenter of triangle XY Z,
and A;B;C are foots of the perpendiculars on the sides Y Z, ZX and XY .(see Figure 3)

O 1

O 2
O 3

I

A

B C

Z

Y

X

Figure 3. I is an incenter also an
orthocenter

Proof: Let ]BAZ = ]CAY = a, ]CBX = ]ABZ = b;]ACY = ]BCX = c, then
]Y XZ = � � b � c;]ZY X = � � c � a; and ]XZY = � � a � b: It follows from the fact
that ]Y XZ+ ]ZY X + ]XZY = �, we get a + b + c = � and ]Y XZ = a;]ZY X = b and
]XZY = c. Therefore, A;B;X and Y are cyclic, which implies that

]XAY = ]XBY: (3)

Similarly, it follows from B;C; Y and Z are cyclic, and C;A;Z and X are also cyclic that

]Y BZ = ]Y CZ and (4)

]ZCX = ]ZAX: (5)

We know from equations (3)-(5) that each two of ]XAY;]Y BZ and are ]ZCX are sup-
plementary angles, so all of them are right angles, which follow from the fact that A;B and C
are being the feet of the perpendiculars on the sides Y Z;ZX and XY respectively. Finally, it
follows from IA ? Y Z, IB ? ZX and IC ? XY that I is the orthocenter of triangle XY Z.

Theorem 4 The point I satisfying ]BAI = ]CAI and ]ABI = ]CBI is unique.
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Proof: We prove by contradiction. If another point I 0 also satis�es the given conditions,
we let segments I 0O1; I 0O2 and I 0O3 meet �1;�2 and �3 at points A0; B0 and C 0, respectively.
Consider whether the points A0; B0 and C 0 are clockwise or counterclockwise of the points A;B
and C. From trigonometry Ceva�s Theorem, we know that not all of them are clockwise, and
not all of them are counterclockwise. Without loss of generality we suppose that point A0 is
counterclockwise of point A, and points B0 and C 0 are clockwise of points B and C, respectively.
(See Figure 4). We draw tangent line of �2 and �3 from points B0 and C 0 respectively, and
let these two tangent lines meet at point X 0. It is clear that the points O1; A0 and X 0 are not
collinear. We observe that the point A0 is on the right hand side of line O1A; while the point
X 0 is on the left hand side line O1A, which is a contradiction.

O 1

O 2
O 3

I

A

B
C

I'

A'

B'

C'

Z

Y

X
X'

Figure 4. The uniqueness

We remark that students from China have access to a Dynamic Geometry System (DGS)
[2], and they can use it to construct desired points described in Theorem 2. However, since
most students do not have access to a Computer Algebra System (CAS), it is di¢ cult for them
to verify how accurate their answers are. We use the following example to show how we can
�nd appropriate answers using Maple as follows:
Example 1. We are given three circles C4 : (x � 2)2 + (y � 2)2 � 1 = 0; C5 : (x +

3)2 + (y + 3)2 � 4 = 0; and C6 : (x � 3)2 + (y + 2)2 � 1=4 = 0: (See Figure 5). We
need to �nd appropriate points A;B and C on C4; C5 and C6 respectively, so that the to-
tal distance of AB + BC + CA achieves its minimum. Students were able to use geometric
constructions with [2] to show that AB + BC + CA achieves its minimum by using Theo-
rem 2 with some error tolerance under 0.01%). However, we use the method described in
Corollary and use Maple as the computational tool, we show that if we move A0 to A =
(1:76761632020814; 1:0273758046571); B0 to B = (�1:20628618061282;�2:115358414871); and
C 0 to C = (2:5843451027448;�1:72209532859668) accordingly as seen in Figure 5, AB+BC+
CA achieves its minimum. We note that the normal vectors at A;B and C respectively, pass
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through the incenter of triangle ABC:

Figure 5. Shortest total distance for circles

Remarks: Through exploring Example 1, we conclude that for the circle case, if the
points A;B;C on C4; C5; and C6; respectively, are the desired points making the total distance
AB + BC + CA the shortest. Then the normal vectors at A;B;C respectively should be the
angle bisectors of ]BAC;]ABC and ]BCA respectively and they should pass through the
incenter of triangle ABC:We shall see how we generalize the circle case to a general case in
2D and corresponding ones in 3D by using Lagrange multiplier method below. We state the
following Lagrange multiplier method (without proof), which can be found in many textbooks.
We shall see that �nding the minimum total distance is a special case of the Theorem 6.

Theorem 5 We assume that f; g are continuously di¤erentiable: Rn ! R: Suppose that we
want to maximize or minimize a function of n variables f(x) = f(x1; x2; :::; xn) for x =
(x1; x2; :::; xn) subject to p constraints g1(x) = c1; g2(x) = c2; :::; and gp(x) = cp: The neces-
sary condition for �nding the relative maximum or minimum of f(x) subject to the constraints
g1(x) = c1; g2(x) = c2; :::; and gp(x) = cp that is not on the boundary of the region where f(x)
and gi(x) are de�ned can be found by solving the system

@

@xi

 
f(x) +

pX
j=1

�jgj(x)

!
= 0; 1 � i � n; (6)

gj(x) = cj; 1 � j � p: (7)

We write rf(x) =
�
@

@x1
f(x);

@

@x2
f(x); :::;

@

@xn
f(x)

�
: If x = x0 is an extremum for the above

system, then

rf(x0) =
pX
j=1

�jrgj(x0): (8)
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Applying a similar approach to that taken in [1], we remark that the Theorem 6 below is
a generalization of Corollary. However, Corollary is inspired by �nding shortest total distance
function.
We assume that f : Rnp ! R; gi : Rn ! R; i = 1; 2:::p; are continuously di¤erentiable in

their respective domains. Our objective is to maximize or minimize the function

f(x1;x2; ; ; ;xp) = f(x11; x
1
2; :::; x

1
n; x

2
1; x

2
2; :::; x

2
n; :::x

p
1; x

p
2; :::; x

p
n)

for xi = (xi1; x
i
2; :::; x

i
n); i = 1; 2; :::p; (9)

subject to p constraints

g1(x1) = c1; g2(x2) = c2; :::; and gp(xp) = cp: (10)

Theorem 6 The necessary condition of �nding the relative extremum of f(x1;x2; ; ; ;xp) subject
to the constraints g1(x1) = c1; g2(x2) = c2; :::; and gp(xp) = cp that is not on the boundary of
the region where f(x1;x2; ; ; ;xp) and gi(xi) are de�ned can be found by solving the system

@

@xi

 
f(x1;x2; ; ; ;xp) +

pX
j=1

�jgj(xj)

!
= 0; 1 � i � p; (11)

gj(xj) = cj; 1 � j � p: (12)

If
pX
i=1

@

@xi
(f(x1;x2; ; ; ;xp)) = 0; (13)

and x = x0 = (x�1;x
�
2; ; ; ;x

�
p) is an extremum for above system, then we have

pX
j=1

�j
@

@xj

�
gj(x

�
j)
�
= 0: (14)

Proof: The proof can be found in [1], theorem 4. For completeness, we include it

here. The result follows directly from
@

@xi
f(x1;x2; ; ; ;xp) = ��i

@

@xi
gi(xi); i = 1; 2; :::p: IfPp

i=1

@

@xi
(f(x1;x2; ; ; ;xp)) = 0; and x = x0 = (x�1;x

�
2; ; ; ;x

�
p) is an extremum for above system,

then
pX
j=1

�j
@

@xj

�
gj(x

�
j)
�
= 0: (15)

Corollary. If the function

f(x1;x2; ; ; ;xp) = jx1 � x2j2 + jx2 � x3j2 + :::+ jxp�1 � xpj2 + jxp � x1j2

for xi = (xi1; x
i
2; :::; x

i
n);

i = 1; 2; :::p; (16)

has an extremum subject to p constraints

g1(x1) = c1; g2(x2) = c2; :::; and gp(xp) = cp; (17)
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at x0 = (x�1; x
�
2; ; ; ; x

�
p) in its closed and bounded domain. Then we can �nd coe¢ cients, �j; j =

1; 2; :::p; so that
pX
j=1

�j
@

@xj

�
gj(x

�
j)
�
= 0: (18)

Proof: It is an easy exercise to see that
Pp

i=1

@

@xi
(f(x1;x2; ; ; ;xp)) = 0 and the proof

follows directly from above Theorem.
Now we consider the following generalized shortest total distance problem in 2D, we will

see that the answers obtained both from algebraic method of using Lagrange multipliers
mentioned in Corollary and geometric construction using a DGS coincide with each other.
Example 2. Consider the following three curves in Figure 6(a) below, given by C1 : y = sin(x)
(shown in blue); C2 : y = x2+2 (a parabola shown in red); and C3 : (x� 3)2+ (y� 3)2� 1 = 0
(a circle shown in green). We need to �nd approximate points A;B and C on C1; C2 and C3
respectively, so that the total distance of AB +BC + CA achieves its minimum.
For simplicity, we use gi(xi) = 0 to denote the equations for the curves of Ci, where i =

1; 2;and 3:We use xi = (xi; yi); i = 1; 2 and 3: Firstly, we solve this algebraically by consider
the following equation:

L(x1;x2;x3; �1; �2; �3) =

q
(x1 � x2)2 + (x2 � x3)2 + (x3 � x1)2+�1g1(x1)+�2g2(x2)+�3g3(x3):

(19)
By setting the partial derivatives of L equal to 0 and solving for the respective variables, we
obtain the shortest total distance AB +BC + CA to be 4:7490344570688468563 when

A = (1:5361542615482507605; 0:99940002366259185632);

B = (0:75230721377067956068; 2:5659661438914029544); and

C = (2:1500448920739965982; 2:4731448828088542621): (20)

Secondly, we see how our algebraic solution coincide with our geometric construction as we
expected. We construct tangent lines at points at C1; C2 and C3 respectively. We observe only
when the points are at A;B and C mentioned in equation (20), will we achieve the minimum
total shortest distance for AB + BC + CA: In such case, three normal lines at A;B and C;
respectively, meet at the incenter of 4ABC (see Figure 6(b)).

Figure 6(a) Total shortest distance
obtained from a CAS

Figure 6(b) Total shortest
distance obtained from a

DGS
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It is natural to generalize the 2D problem to the following 3D case:
Example 3. We are given four surfaces shown in Figure 7, where S1 : x2+ y2+ z2� 1 = 0

(a sphere shown in yellow), S2 : x2 + (y � 3)2 + (z � 1)2 � 1 = 0 (a sphere shown in blue),
S3 : z � (x2 + y2) � 2 = 0 (a paraboloid shown in red), and S4 : (4(x � 3) + (y � 3) + (z �
1))(x� 3) + ((x� 3) + 4(y� 3) + (z� 1))(y� 3) + ((x� 3) + (y� 3) + 4(z� 1))(z� 1)� 3 = 0
(an ellipsoid shown in green). We want to �nd points A;B;C and D on the surfaces S1; S2; S3
and S4 respectively, so that the total distance AB +BC + CD +DA achieves its minimum.

Figure 7. A total shortest distance
problem in 3D

Method 1: Geometric intuition: Wemay think of this problem as a light beam re�ection
from one surface to the other. If we think of BA as an incoming light beam toward the point
A on surface S1 and DA as an outgoing light beam at A, then NA; the normal vector at A on
S1 should be their angle bisector. Similarly, we should have the following observations:

1. The line segments BC;AB and the normal vector at B; denoted by NB; should lie on the
same plane and NB is the angle bisector for AB and BC.

2. The line segments BC, CD and the normal vector at C; denoted by NC ; should lie on
the same plane and NC is the angle bisector for BC and CD.

3. The line segments CD;DA and the normal vector at D; denoted byND; should lie on the
same plane and ND is the angle bisector for CD and DA.

We shall see if our geometric intuition is correct, but �rst we use Lagrange multiplier method
stated in Theorem 6 or Corollary to �nd the solutions algebraically.
Method 2: Solving it algebraically: For simplicity, we use gi(xi) = 0 to denote the

equations for the surfaces of Si, where i = 1; 2; 3; and 4: Moreover we use x1 = (s11; s12; s13) 2
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S1; x2 = (s21; s22; s23) 2 S2;x3 = (s31; s32; s33) 2 S3; and x4 = (s41; s42; s43) 2 S4 in our
computations with Maple. We apply Lagrange Method by considering the following

L(x1;x2;x3;x4; �1; �2; �3; �4) =

q
(x1 � x2)2 + (x2 � x3)2 + (x3 � x4)2 + (x4 � x1)2 +

�1g1(x1) + �2g2(x2) + �3g3(x3) + �4g4(x4): (21)

By setting the partial derivatives of L = 0 and solving for the variables with the help of Maple,
we algebraically obtain the shortest total distance AB + BC + CD + DA = 9:104983301.
The desired points A;B;C and D on S1; S2; S3; and S4, respectively, obtained from Maple are
A = [s11; s12; s13]; B = [s21; s22; s23]; C = [s31; s32; s33] and D = [s41; s42; s43]; where

s11 = :33389958127263692867; s12 = :82675923225542380177; s13 = 0:45274743677505224502;

s21 = 0:13641928282913798603; s22 = 2:0175068585849490438; s23 = 1:1268739782018690446;

s31 = 0:28488630072773836633; s32 = :62315636129160757197; s33 = 2:4694840549605319295;

s41 = 2:3607938428457871966; s42 = 2:4901551912577622423; s43 = 1:3195995907854243548:

The line segments of AB;BC;CD and DA are shown in Figure 8(a), and we also use Maple
for computation to show in Figure 8(b) that the normal vector at A is an angle bisector of
AB and AD: The angle � between AB and AD is 0:9679408165 and the angle � between the
normal vector at A and AB is equal to �

2
with error of tolerance of �1:5 � 10�9:

Figure 8(a). Shortest Total distance
Figure 8(b) Normal vector is an angle

bisector using Maple

Now, we shall again demonstrate this geometrically. The blue dotted lines in Figure 9 are
respective normal vectors at respective points A;B;C and D; and the dark red line segments

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 1, ISSN 1933-2823

89



are respective angle bisectors. In Figure 9, they coincide with respective normal vectors when
the shortest total distance AB +BC +CD +DA is achieved. In other words, our geometry
constructions coincide with our algebraic answers using CAS.

Figure 9. Total shortest distance 3D
problem veri�ed using a DGS

3 Conclusion

It is interesting to note the following observations for students with di¤erent backgrounds:

1. For students who have access to a CAS but not DGS: It is di¢ cult for students to use
geometric constructions to produce the simple intuitions. They can only modify the CAS
worksheet when validating their algebraic answers using Lagrange multipliers method.

2. For students who have access to a DGS but no CAS: Students will use their favorite
DGS to reproduce simple special cases (such as circles) discussed in this paper, and
make conjecture about the validity of the solutions. However, their conjectures cannot
be validated since they have no CAS to verify solutions analytically.

3. For those students who have no access to either a CAS or DGS, they can only appreciate
the graphical representations of this paper, they have no available tools to experiment on
their own.

It is natural to see how students �rst approach the optimization problem by considering
the simplest case of circles in 2D, and use geometry constructions to gain intuition of what
can be true in a general case in 2D and 3D. The Examples 2 and 3 indeed shed some lights
on why we need to train students to equip the knowledge both in DGS and CAS when solving
problems. In addition, we note that traditionally when technological tools are not available,
students �nd applying Lagrange Multiplier Method in solving optimization problems di¢ cult;
not only due to the complexity of the algebraic manipulation nature but also students often do
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not fully understand the geometric interpretation behind the method. The problems described
in this paper posed di¤erent ways of �nding the shortest total distance compared to the ones
given in [1]. Our aim is to emphasize the importance of DGS to gain geometric intuitions on
the one hand, and also the necessity of being able to manipulate CAS on the other hand, to
obtain solutions analytically in the areas of Linear Algebra and Multivariable Calculus.
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